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ABSTRACT

We present new analytical estimates of the large scale bias of neutral hydrogen (H I) We use a
simple, non-parametric model which monotonically relates the total mass of a halo Mtot with its
H I mass MH I at zero redshift; for earlier times we assume limiting models for the ΩH I evolution
consistent with the data presently available, as well as two main scenarios for the evolution of our
MH I - Mtot relation. We find that both the linear and the first nonlinear bias terms exhibit a strong
evolution with redshift, regardless of the specific limiting model assumed for the H I density over time.
These analytical predictions are then shown to be consistent with measurements performed on the
Millennium Simulation. Additionally, we show that this strong bias evolution does not sensibly affect
the measurement of the H I power spectrum.
Subject headings: cosmology: large-scale structure of universe, diffuse radiation

1. INTRODUCTION

The 21cm emission line of neutral hydrogen has been
the workhorse of astronomy for over 50 years. Its
use for galactic astronomy cannot be overestimated,
and it now promises to revolutionize cosmology as
well (cf. Furlanetto et al. 2006; Barkana & Loeb 2007;
Pritchard & Loeb 2008; Mao et al. 2008; Visbal et al.
2008, and references therein).
Compared to present probes of large-scale structure,

the 21 cm intensity mapping technique (Chang et al.
2008a; Wyithe et al. 2008a) offers three advantages.
First, it allows to reconstruct the spatial distribution of
H I in the universe over volumes much larger than the
ones currently probed by galaxy redshift surveys. Since
the precision with which the power spectrum of density
fluctuations can be measured is approximately propor-
tional to the number of independent Fourier modes that
fit into the survey volume, a larger survey volume leads
to higher precision in the measured power spectrum and
hence cosmological parameters (Loeb & Wyithe 2008).
Second, 21 cm intensity mapping allows to probe a very
wide range of redshifts and to map H I distribution in
space and time not only for the epoch after reioniza-
tion (z . 6) but also during reionization and even in
the so-called dark ages, before the first galaxies were
formed (z & 20). Third, using radio telescopes is one
of the most economical ways to probe the dark energy
evolution among all current and planned experiments,
although several crucial advances in calibration and fore-
ground removal must be made for the intensity mapping
approach to reach its stated goals.
As a dark energy probe, 21 cm intensity mapping

is primarily useful for measuring the baryon acous-
tic oscillations (BAO) in the matter power spectrum
(Wyithe et al. 2008b; Chang et al. 2008b; Wyithe et al.
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2008a; Ansari et al. 2008; Seo et al. 2010), which pro-
vides important information on constraining cosmologi-
cal models and parameters. Measurements of the scale
of the BAO in the matter power spectrum as a func-
tion of redshift, when combined with the true physical
scale, i.e., the sound horizon scale measured from the
cosmic microwave background (CMB), probe the angu-
lar diameter distances and Hubble parameters to vari-
ous redshifts, and therefore dark energy properties (see,
for instance, Hu & White 1996; Eisenstein et al. 1998;
Eisenstein 2002; Blake & Glazebrook 2003; Linder 2003;
Hu & Haiman 2003; Seo & Eisenstein 2003). The dis-
tinct oscillatory feature of the BAO allows us to iso-
late and measure the BAO information independent of
the overall broadband shape of the HI power spectrum.
Therefore in principle BAO measurements do not require
a knowledge of the HI bias, i.e., the relation between the
neutral hydrogen and the total matter clustering, which
affects the overall shape of the HI power spectrum.
However, understanding the HI bias is important for

the 21cm BAO surveys in the following ways. First the
prediction of the signal to noise of the BAO measure-
ments is sensitive to the knowledge of the clustering bias
of HI (Chang et al. 2008b; Seo et al. 2010). Second, un-
derstanding HI bias will help us to extract cosmologi-
cal information from the broadband shape of the power
spectrum in addition to the BAO. Third, the nonlin-
ear effects on the BAO, such as the degradation and
the shift of the feature, may differ for different biased
tracers (e.g., Padmanabhan & White 2009; Metha et al.
2010). Knowing the properties of HI bias will allow us to
approximately estimate the degree of the expected non-
linear effect on the BAO in the HI distribution.
In this work, we focus on two critical aspects of the

large-scale H I bias: its dependence on the relation be-
tween H I mass and halo mass and its evolution with red-
shift. To study the first aspect, we use a non-parametric
model where we assume a one-to-one correspondence be-
tween a H I mass present in a dark matter halo MHI and
the total mass Mtot of this halo. Using this MH I −Mtot

relation we estimate the large-scale bias of the H I us-
ing a model containing elements on the halo occupation
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distribution (HOD) formalism and the H I mass func-
tion measured at z = 0 (Zwaan et al. 2005). We then
use this relation to paint H I on Millennium Simulation
halos (Springel et al. 2005) and to measure the power
spectrum of neutral hydrogen in order to test our model
assumptions.
With respect to the redshift evolution of the bias, it

is absolutely critical to know how the H I mass function
evolves with time. However, to the best of our knowl-
edge, little is known about the redshift evolution of H I
both on the theoretical and the observational sides (but
see Wyithe et al. 2009). A detailed study of the bias evo-
lution requires two extra pieces of information which are
currently poorly constrained by observational data: the
evolution of the total HI mass in the universe and the
evolution of the HI mass function. For both of these,
we empirically assume limiting evolution models consis-
tent with the few available data that should bracket the
actual evolution. We then proceed to predict the bias
evolution in these scenarios, being aware of the fact that
the actual evolution will lie somewhere in between these
limiting cases.
The paper is organized as follows. In §2 we intro-

duce the basics of our model, we derive the relation
MHI − Mtot at z = 0, we introduce the limiting cases
for its evolution and we define the bias. In §3 we present
our main results: analytic predictions for the evolution
of HI bias, measurement of its scale dependence on the
Millennium Simulation and how it would affects mea-
surements of the power spectrum. Finally, we conclude
in §4. To compare analytical and numerical results,
throughout the paper we use a flat ΛCDM cosmology
with ΩM = 0.25, σ8 = 0.9, Hubble parameter h = 0.73
and initial power spectrum index of ns = 1, consistent
with the cosmological parameters used in the Millennium
Simulation.

2. BACKGROUND

2.1. Basic formalism

The HOD model (cf. Cooray & Sheth 2002;
Berlind & Weinberg 2002, and references therein)
provides a parameterized prescription for the spatial
distribution of objects that can be found inside dark
matter halos. Originally inspired to model the distribu-
tion of galaxies, it can also be used to model the spatial
distributions of other astronomical objects, such as the
neutral hydrogen clouds. The advantage in using this
approach is that the problem of deriving the spatial
distribution naturally falls into two separate parts: the
first part is concerned with the distribution of halos in
the universe, and the second part involves how objects
(i.e., galaxies, hydrogen clouds, etc) populate these
halos. In this work we use some of the elements of this
HOD formalism to attempt to estimate the large-scale
bias, i.e. in a quasi-linear regime, where the estimations
of the 21 cm correlations for studying the BAO will take
place.
The first component is a model for the distribution of

dark halos in the universe. In the analytic approach,
one specifies the halo mass function, n(M), the spatial
correlations of the halos, and the density profiles for halos
of mass M , all based on halo collapse models and fits to
N -body simulations.

To describe the mass function of dark matter halos (the
spatial density of halos as a function of mass), we use
the Sheth & Tormen mass function (Sheth et al. 2001;
Sheth & Tormen 2002):

nh(M) =
ρ̄m
M2

∣

∣

∣

∣

d lnσ

d lnM

∣

∣

∣

∣

f(ν), (1)

where ρ̄m ≡ Ωmρc is the average matter density in the
universe at the epoch of observation, ν(M), defined by
ν(M) ≡ δc/σ(M, z), is the ratio between the threshold
for growth of linear fluctuations δc = 1.69 and the rms
variance of a sphere of radius R (corresponding to a mass
M) at redshift z

σ2(R, z) =

∫

d3k

(2π)3
|W (k,R)|

2
P (k, z). (2)

Here, P (k, z) is the linear matter power spectrum and
W (k,R) is the Fourier transform of a top-hat window of
radius R. The function f(ν) motivated by the ellipsoidal
collapse model (Sheth & Tormen 2002) is

f(ν) = A

√

2aν2

π

[

1 + (aν2)−p
]

e−aν2/2, (3)

where for normalization purposes, A = 0.322, p = 0.3
and a = 0.707.
The second component is a model specifying how the

objects under consideration (in the present case, the
amount of neutral hydrogen) occupy the dark halos as
a function of halo mass. In a HOD model, for the largest
scales, we would be interested in the average number
of galaxies 〈N(Mtot)〉 that populate a particular halo of
mass Mtot. In our case, we are interested in the average
number of H I atoms, or equivalently the average mass
of H I inside a halo. For the scope of this paper, which
deals with large scale-bias, we are not using the complete
HOD prescription: this would mean specifying the com-
plete probability distribution function of P (MH I|Mtot),
where its higher moments contribute to the estimation of
the bias on small, nonlinear scales; for large scale bias, we
only need the average H I mass 〈MH I(Mtot)〉. When in-
terested in the small-scale bias, details the spatial and ve-
locity distribution of the H I inside the halos are needed;
these are out of the scope of this paper (see for in-
stance Bagla & Khandai 2009, Obreschkow et al. 2009
Wyithe et al. 2009 for treatments that include small-
scale clustering).
In the following subsection, we explore different models

for the neutral hydrogen mass function and the relations
between the neutral hydrogen MH I and the total mass
of a halo Mtot.

2.2. Neutral Hydrogen Mass Function

The neutral hydrogen mass function of galaxies in the
local universe has been measured by the HIPASS survey
(Zwaan et al. 2005). However, the masses of the halos
that host galaxies with a given H I mass are not, gen-
erally, known. Thus, we need to construct a plausible
model for the relation between the total mass of a halo
Mtot and its neutral hydrogen mass MH I.
While such a relation does not have to be a sim-

ple function, models that assume a one-to-one cor-
respondence between the galaxy luminosity and the
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Fig. 1.— Fraction of blue galaxies as a function of total halo
mass from matching the cumulative halo mass function and the
observed SDSS galaxy luminosity function. The horizontal range
shows the observed fraction on blue BCGs in the maxBCG galaxy
cluster catalog (E. Rykoff, private communication).

halo mass (Coĺın et al. 1999; Kravtsov & Klypin 1999;
Kravtsov et al. 2004) provide remarkably good fit not
only to the galaxy correlation functions (Conroy et al.
2006; Maŕın et al. 2008) but also to a wide vari-
ety of observational tests (Nagai & Kravtsov 2005;
Gnedin 2008; Volonteri & Gnedin 2009; Guo et al.
2009; Conroy & Wechsler 2009; Tinker & Conroy 2009).
Therefore, it is tempting to assume such a relation be-
tween the H I mass and total halo mass as well, that is,
to assign one HIPASS source to one dark matter halo.
There is one complication with such an approach – not

all galaxies contain H I. Thus, we need to account for
the fraction of galaxies that do. Unfortunately, there are
no reliable observational measurements of the fraction of
H I-rich galaxies as a function of galaxy mass or lumi-
nosity. Instead, we adopt a simple ansatz that all blue
galaxies contain H I and all red galaxies do not. Then, we
can use the abundance matching technique if we match
the abundances of HIPASS and blue galaxies.
Specifically, the relation between the total mass of a

dark matter halo Mtot and its H I mass MH I can be ob-
tained by matching the two cumulative mass functions,

nH I(> MH I) = nB(> Mtot), (4)

where nH I is the observed cumulative mass function
(Zwaan et al. 2005) and

nB(> Mtot) =

∫ ∞

Mtot

dMfB(M)nh(M). (5)

In the last equation, fB is the fraction of blue galaxies
as a function of halo mass.
That fraction can be computed from the mea-

sured Sloan Digital Sky Survey (SDSS) red and blue
galaxy luminosity functions (Montero-Dorta & Prada
2009) using the same abundance-matching technique.
Namely, using the total SDSS luminosity function from
Montero-Dorta & Prada (2009) we first match halo
masses to r-band magnitudes as

ngal(< mr) =

∫ ∞

Mtot

dMnh(M); (6)

such a matching gives us a relation between a galaxy
magnitude mr and the halo mass Mtot. Then, for each
mr (and, hence, Mtot) we compute the fraction of blue

Fig. 2.— Cumulative mass function of dark matter halos of blue
galaxies (top panel), the cumulative H I mass function of galaxies
(from Zwaan et al. 2005, right panel), and the relation between
the galaxy H I mass and its halo mass (central panel) obtained by
matching the two, at z = 0. The dotted line in the top panel shows
the cumulative mass function of all dark matter halos, hosting both
blue and red galaxies.

galaxies from the measured blue galaxy luminosity func-
tion (Montero-Dorta & Prada 2009). The so-measured
blue galaxy fraction is shown in Figure 1 together with
am estimate of the blue BCG fraction from the maxBCG
galaxy cluster catalog (E. Rykoff, private communica-
tion). Estimates of the blue BCG fraction in X-ray se-
lected clusters usually give substantially larger numbers
(Bildfell et al. 2008); however, because X-ray emission is
likely to correlate with the existence of a cooling flow
(and, hence, a blue BCG), the latter estimates should
be taken as upper limits (E. Rykoff, private communica-
tion).
The resulting matching between the H I mass of a

galaxy and its total mass from Equation (4) is shown in
Figure 2. The relation between MH I and Mtot from the
central panel allows us to compute the clustering prop-
erties of H I from the known clustering properties of the
dark matter halos.
Unfortunately, little is known about the H I mass func-

tion beyond z ≈ 0.1. To obtain the MH I - Mtot match-
ing at higher redshifts, we therefore must extrapolate
the observed H I mass function to earlier times. This ex-
trapolation is, of course, not unique and it requires two
ingredients: the evolution of the total H I mass and how
the H I mass is distributed among halos. To make the
matter even worse, the observational constraints on the
total H I mass density in the universe ρH I (or, equiva-
lently, the cosmological density parameter ΩH I) are im-
precise. Figure 3 shows a representative sample of these
constraints for a range of redshifts (Zwaan et al. 2005;
Prochaska et al. 2005; Rao et al. 2006). While at z ≈ 0
and z & 2 the measurements are reasonably robust, at
intermediate redshifts the error bars are large and the
behavior is non-monotonic. Therefore, to explore a wide
enough range of possible evolutionary histories of ΩH I,
we choose three representative models.

• Model A provides a reasonable fit to all data
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Fig. 3.— Three models (A, B, and C) for the redshift evolution of
the total H I density that we explore in this paper. The lines for the
models are slightly shifted vertically for clarity – all models adopt
ΩH I = 10−3 at z > 3. Black symbols with error bars show the
observational measurements from Zwaan et al. (2005) (triangle),
Rao et al. (2006) (circles), and Prochaska et al. (2005) (squares).

points except for a single z ≈ 2.3 point from
Prochaska et al. (2005).

• Model B follows the suggestion of
Prochaska & Wolfe (2009), who argue that
ΩH I does not evolve between z = 0 and z ≈ 2.
Since it provides a plausible lower limit to the
redshift evolution of ΩH I, we use this model even
if it ignores the measurements of Rao et al. (2006).

• In the same spirit, Model C serves as an upper limit
to the possible ΩH I(z). Formally, it is inconsistent
with the HIPASS measurement, but we assume
that ΩH I in Model C increases rapidly from the
HIPASS value of 3.8 × 10−4 to about 10−3 within
a redshift interval ∆z ≪ 1.

To fully specify the H I mass function we then need
to address how the total H I mass is distributed among
halos as a function of redshift. If the shape of the H I
mass function is approximately preserved at z > 0, then

nH I(> MH I, z) = qN (z)n0(> qM (z)MH I), (7)

where n0(> MH I) is the observed cumulative HIPASS
mass function (Zwaan et al. 2005) at z = 0. The two
quantities qN and qM are not independent; for a given
evolutionary history of neutral hydrogen contents of the
universe ρH I(z) ≡ ΩH I(z)ρcrit, qN and qM are related by
the constraint

ρH I(z)=

∫ ∞

0

MH I
dnH I(MH I, z)

dMH I
dMH I

=

∫ ∞

0

nH I(> MH I, z) dMHI

=
qN (z)

qM (z)
ρH I(0). (8)

Obviously, qN (0) = qM (0) = 1.
It is not practical to explore all possible evolutionary

histories for nH I(> MH I, z); therefore, we restrict this
work to only two scenarios.

Pure Number Density Evolution: scenario (here-
after, PNE) assumes that the H I masses of

individual halos do not change at high redshift
(qM = 1 for all z), but only the number density
of halos of a given mass changes to reflect the
change in the total neutral hydrogen content of
the universe, qN = ΩH I(z)/ΩH I(0).

Pure Mass Evolution: scenario (hereafter, PME –a
direct analog of a “pure luminosity evolution” sce-
nario in optical surveys) adopts an opposite ex-
treme where the number density of halos remain
the same (qN = 1 for all z), but, instead, their
masses change, qM = ΩH I(0)/ΩH I(z).

The justification for such a restriction is as follows. If
the number density of galaxies with a given H I mass in-
creases monotically with increasing redshift, then qN (z)
is a monotonic function of z (which is expected, since
galaxies merge but do not break up). If, for a given halo,
its H I also increases monotically with z (which is ex-
pected, if H I gets consumed by star formation and new
accretion never exceeds the consumption), then qM (z) is
also a monotonic function of z. Since qN (0) = qM (0) = 1,
our two scenarios bracket all possible evolutionary path
for qN and qM .
Obviously, these assumptions do not hold all the time

–for example, for some galaxies accretion of fresh gas can
exceed the consumption by star formation at some times.
However, over long timescales and over the whole galaxy
population, it appears plausible that our two scenarios
bracket the majority of evolutionary histories for nH I(>
MHI, z).
One more ingredient of our model can evolve with red-

shift –and that is the fraction of blue galaxies fB(Mtot).
The measured fraction of blue galaxies at z = 0 from
Figure 1 is exceptionally well (within the thickness of the
line in Figure 1) fitted by the following simple formula:

fB(Mtot) =

(

1 +
Mtot

M1

)−0.25

exp

(

−

[

Mtot

M2

]0.6
)

(9)

with M1 = 2.5 × 1011M⊙ and M2 = 3.0 × 1014M⊙. It
is tempting to associate M1 with the characteristic mass
of dwarf ellipticals, and M2 with the characteristic mass
of a galaxy cluster. Then the behavior of fB with M
becomes well justified physically: for Mtot & M1 a small
fraction of all halos host dwarf and (at larger masses)
regular elliptical galaxies, and fB becomes a gradually
decreasing function of mass. But for Mtot & M2 halos
turn into galaxy groups and clusters, and the fraction of
halos dominated by blue galaxies plummets.
With this plausible (although by no means proven) in-

terpretation, we can come up with reasonable evolution-
ary scenarios for fB as a function of z. Specifically, we
adopt the parametric form (Equation (9)), but allow M1

and M2 to evolve with redshift as

M1(z)=2.5× 1011(1 + z)αM⊙,

M2(z)=3.0× 1014(1 + z)βM⊙. (10)

It seems plausible to assume that the fraction of blue
galaxies at a given halo mass is higher at high redshift,
i.e., α ≥ 0 and β ≥ 0. To investigate the dependence of
our results on these two parameters, we consider below
three representative cases with (α, β) = (0, 0), (0, 1), and
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(1, 1). This set of values is, of course, not exclusive, but
it is sufficient to evaluate the robustness of our results to
these parameters.
In this work we therefore consider a range of possi-

bilities –our models A, B, and C for ΩH I(z) and two
evolutionary scenarios (PNE and PME) –as sampling a
plausible range of the redshift dependence of the H I mass
function. It seems reasonable to speculate that the actual
evolution should lie somewhere in between these different
scenarios.

2.3. Large-Scale Bias of HI

On large scales, and not considering redshift distor-
tions, the H I bias parameters provide the relations be-
tween the H I and dark matter correlation functions
(Pan & Szapudi 2005)

ξHI ≈ b21,H Iξdm, (11)

ζHI ≈ b31,H Iζdm + b2,H Ib
2
1,H I(ξ

(1)
dmξ

(2)
dm + perm.), (12)

where ξ and ζ represent the 2-point and 3-point correla-
tion functions, respectively. Similar relations are found
for quantities calculated in Fourier space (power spec-
trum and bispectrum).
To calculate the large-scale bias of neutral hydrogen,

we start by considering first the bias of dark matter halos
with respect to the total matter clustering. In the Sheth–
Tormen formalism, the bias parameters are prescriptions
obtained from the spherical collapse model. For halos of
mass M , the linear and (first) nonlinear terms are given
by (Scoccimarro et al. 2001)

bh1 (M)=1 + ǫ1 + E1, (13)

bh2 (M)=
8

21
(ǫ1 + E1) + ǫ2 + E2, (14)

with coefficients given by

ǫ1=
aν2 − 1

δc
, (15)

ǫ2=
aν2(aν2 − 3)

δ2c
, (16)

E1=
2p

δc(1 + (aν2)p)
, (17)

E2

E1
=

1 + 2p

δc
+ 2ǫ1, (18)

where i = 1, 2 represent the linear and first nonlinear
terms, where their redshift dependence is encompassed in
ν = δc/σ(M, z), which depends on the redshift evolution
of the linear power spectrum.
Using the MH I−Mtot relation obtained in the previous

section, the H I bias from all halos with a mass greater
than Mmin is given by the following integral:

bi,H I =
1

ρH I

∫ ∞

Mmin

dMnh(M)bhi (M) 〈MH I(M)〉 . (19)

where ρH I is the density of neutral hydrogen:

ρH I =

∫ ∞

Mmin

dMnh(M) 〈MH I(M)〉 . (20)

In what follows we present the analytic results for the
large-scale bias and its evolution in redshift.

3. RESULTS

3.1. Analytic Results

We calculate the bias parameters as a function of red-
shift for all models described in §2.2. In Figure 4 we
show the results for the models where the galaxy blue
fraction does not evolve with redshift, i.e., in Equation
(10), α = β = 0. In the left panel we present the linear
(b1) bias redshift evolution; in the right panel, the nonlin-
ear (b2) bias evolution, with Mmin = 104 h−1M⊙, which,
given the fact that it is not expected that low mass halos
(below 107 h−1M⊙) contain significant amounts of H I, is
set to the value mentioned above as a conservative limit.
The black thick line shows the evolution of bias in the
PME scenario; as for the PNE scenario, the red thin solid
line shows the results for model A, the magenta dashed
line shows results for model B, and the blue dotted line
does it for model C.
The first feature that arises from these analytical re-

sults is the strong dependence of the bias terms on the
redshift for all the models considered. Given that ΩH I

does not evolve significantly with redshift, the reason for
this behavior lies in the fact that preserving the match-
ing relations (Equation (4)) at higher redshift has the
consequence that the most massive halos, which are less
numerous at high redshift (i.e., are more biased with re-
spect to the dark matter distribution), carry more H I
mass than the halos with the same Mtot at z = 0. There-
fore, it is expected for both b1 and b2 to show a strong
redshift dependence.
For the PNE scenario, we can see differences in both

bias parameters, though they are relatively small. Be-
tween models A and B, the differences are increasing
with redshift, with a peak around z ∼ 2 –at the mo-
ment where ΩH I(z) of model B is the lowest compared
to the rest of the models; since the fraction of neutral
hydrogen in that model is low, in the PNE scenario this
implies fewer halos, and therefore the bias is expected to
be larger. In model C, the difference in the bias evolu-
tion compared to model A appears only at low redshifts,
since it starts with a higher ΩH I and therefore having a
smaller bias on redshifts close to z = 0. The differences
for the nonlinear bias term b2 are qualitatively similar
but much milder.
As opposed to the PNE scenario, there are no differ-

ences between the models biases in the PME scenario;
this is not surprising since, by definition, in that sce-
nario just the masses of halos change, but not their total
number density. Hence, irrespective of the ΩH I(z) evo-
lution, the behavior of the bias here depends only on the
cosmological evolution. When we compare both scenar-
ios, the differences in the bias parameter b1, albeit small
in general, grow steadily with redshift reaching 10% level
between z = 1 and 4; note here that there are differences
between the PME scenario and the model B in the PNE
scenario only after z ∼ 2. For b2 between z = 0 and 1
there are almost no differences between the models, but
after that the differences grow until reaching almost a
factor of 2 by z = 4. In both cases the PME scenario has
a larger bias; this difference is due to the fact that more
halos are needed in the PNE scenario to account for the
change of neutral hydrogen in the universe, which leads
to a lower halo mass for a given H I mass and hence a
smaller bias than in the PME scenario.
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Fig. 4.— Bias coefficients of neutral hydrogen clouds as a function of redshift. Left: linear bias b1 vs. redshift in the pure mass evolution
scenario for all models (thick black solid line), and the pure number evolution scenario for model A (thin red solid line), model B (dashed
magenta line) and model C (blue dotted line). Right: first nonlinear bias term b2 vs. redshift for the same models described in the left
plot. All coefficients are calculated with Mmin = 104 h−1M⊙.

As for the differences between the different blue frac-
tion evolution models, and the case where we simply as-
sume all galaxies contain H I, we show in Figure 3.1 the
quantity

∆bi = bi − bi,FID, (21)

where i = 1, 2, and the fiducial (FID) model corresponds
to the model A in the PNE scenario, with (α, β) = (0, 0).
The black dotted line represents the fB(M, z) = 1, i.e.
all galaxies carry H I; the blue short-dashed line repre-
sents the evolution model with (α, β) = (0, 1) , and the
long-dashed line shows the results for the blue fraction
evolution model with (α, β) = (1, 1), both in the model
A of the PNE scenario. For other models and scenarios
the results are qualitatively similar: between the differ-
ent blue fraction evolution models both the linear and
nonlinear bias do not differ significantly. But when we
compare our FID model to that where all galaxies carry
neutral hydrogen, i.e., fB = 1, then the differences are
more significant, considering a realistic blue galaxy frac-
tion lowers the H I bias, since the neutral hydrogen avoids
accumulating in the bigger halos and concentrates more
in mid-size and small mass halos.
The weak dependence of the H I bias on the model

adopted for the neutral hydrogen evolution means that
the intensity mapping observations will be able to pro-
vide only a limited amount of information on the global
evolution of the neutral hydrogen abundance in the uni-
verse. On the other hand, from a cosmologist’s point
of view, this is good news: a detailed knowledge of the
H I evolution may not be needed for studying the dark
energy evolution in the radio intensity mapping experi-
ments. Note that even though the differences in b2 be-
tween the PME and PNE models at high redshift are
larger than those in b1, measurements on higher-order
correlations have larger uncertainties which would make
the b2 estimations less reliable. Nevertheless, if good
signal-to-noise measurements can be done, this param-
eter can play a relevant role in determining the right
evolution model.

3.2. Linear Bias calculated from simulations

In order to have a consistency check of our analyti-
cal calculations, we turn to estimate the linear H I bias
from the Millennium Simulation (Springel et al. 2005).
The N-body simulation was carried out for 21603 par-
ticles with mass mp = 8.6 × 108 h−1M⊙ in a box with
Lbox = 500 h−1Mpc on the side, with the same cosmo-
logical parameters we use for our analytical estimates.
Following Equation (11), we can estimate the linear

bias in the simulation by

bMS
H I,1(k) =

√

PH I(k)

Pdm(k)
, (22)

where Pdm(k) is the real-space dark matter power spec-
trum and PH I(k) is the real-space HI power spectrum.
In addition to validate our analytical method, this mea-
surement should allow us to estimate the scales below
which nonlinear effects become relevant.
We use the MH I − Mtot relation obtained in §2.2 to

assign the neutral hydrogen mass to dark matter halos
and calculate the H I power spectrum PH I. Note that
due to the mass resolution of the simulation, our dark
matter halo catalog does not resolve well the halos below
a certain mass threshold, and those halos may contribute
substantially to the value of the H I bias. Therefore, con-
sistency requires the bias measured in the Millennium
Simulation to be compared to the value obtained ana-
lytically through Equation (19) assuming the same mass
threshold Mmin. For this reason, we compare analytical
estimates and measured values of the bias obtained by
assuming Mmin ∼ 1011h−1M⊙, which should correspond
to halos with Np ∼ 100 particles. Another aspect when
we are “painting” H I in the simulation is its distribution
inside the halos. In our case, we place all hydrogen at
the center of the halo, i.e we are not assuming diffuse H I
emission inside. While this might not model accurately
the small-scale clustering of the H I, what matters in the
large-scale clustering are the details of theMH I−Mtot re-
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Fig. 5.— Differences in the bias parameters (linear b1 in left panel, nonlinear b2in right panel) between different blue fraction redshift
evolution models. The FID model is the model A in the PNE scenario, with (α, β) = (0, 0), in red straight line. Left: ∆b1 = b1 − b

1,FID,

where the black dotted line represents the fB(M, z) = 1, the blue short-dashed line represents the evolution model with (α, β) = (0, 1)
, and the long-dashed line shows the results for the blue fraction evolution model with (α, β) = (1, 1). Right: ∆b2 = b2 − b

2,FID, lines

represent the same models of the left panel.

Fig. 6.— Neutral hydrogen bias factor bMS

H I,1
(k) at different red-

shifts from the Millennium Simulation (symbols) for the model A in
the PNE scenario, and our analytical predictions for the linear bias
b1,H I (horizontal lines). The dashed lines show analytical predic-

tions for the whole set of halos (Mmin = 104 h−1M⊙), while solid
lines show the analytical calculations for the set of halos resolved
in the Millennium Simulation (Mmin = 1011h−1M⊙).

lation; the spatial profile of the neutral hydrogen within
a halo will have a very limited effect on the measured bias
and its scale dependence on large scales we present in this
paper (Cooray & Sheth 2002; Schulz & White 2006).
Figure 6 shows, in symbols, the measured bias bMS

H I,1(k)
for a series of redshifts from z = 0 to z = 3 for the model
A in the PNE scenario. The solid lines represent bH I,1

from our analytical modeling, with a minimum mass cut
Mmin = 1011 h−1M⊙; the dashed lines are the results of
bH I,1 with Mmin=104 h−1M⊙.
The bias measured from the simulation using Equation

(22) should agree with bH I,1 obtained from Equation (19)
on large scales; on smaller scales, a contribution from the
clustering within a halo results in a scale dependence in
bias (Seljak 2000) which we refer to as a nonlinear bias
effect. From the figure, we indeed observe a strong red-
shift evolution of large-scale bias in agreement with the
behavior found in our analytical calculations; the agree-
ment is of the order of 5%. The small differences are due

mainly to the fact that our analytical halo mass function,
though is a good approximation, indeed has small differ-
ences to the one measured in simulations. The figure
also shows that the linear bias assumptions break down
for k & 0.15 hMpc−1, but the effective nonlinear scale
(where the linear bias deviates strongly from a constant
value) appears to evolve little with redshift, likely a con-
sequence of our adopted MH I −Mtot relationship, given
the fact that in simulations this scale varies greatly with
redshift. We point out that if our assumption of the one-
to-one correspondence between the HIPASS source and
the halo breaks down for large halo masses, it will alter
bMS
H I,1(k) to some extent.
As stated earlier, the difference between the two sets of

horizontal lines in Figure 6 shows the contribution of ha-
los with Mtot < Mmin = 1011h−1M⊙. This contribution
is substantial. It is important to note that in the case of
the 21 cm intensity mapping, we suffer no lower detection
limit in neutral hydrogen mass and therefore halo mass.
In that case, the bias derived with Mmin = 0 is the ap-
propriate one. As a much higher mass resolution would
be required to reduce Mmin much below 1011h−1M⊙, the
Millennium Simulation –or another simulation with sim-
ilar resolution– cannot be used to provide an accurate
estimate for the H I bias for this kind of survey, but only
as a useful tool to validate the semi-analytical estimates
obtained in the previous section.

3.3. Impact of bias evolution on the power spectrum

Having shown how the H I bias evolves with redshift,
we turn to assess to what extent this may or may not have
an effect on the measurement of the power spectrum. At
tree-level in perturbation theory, the density fluctuations
in the neutral hydrogen δH I and in the dark matter δdm ≡
δ are related through

δH I(~x, χ)= b(χ)δ(~x, χ) = b(χ)D+(χ)δ(~x, 0)

≡E(χ)δ(~x, 0), (23)
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where D+(χ) is the linear growth factor, and we ex-
changed redshift z for comoving distance χ. When ob-
servations are performed, only the product E(χ) can
be measured, as the redshift evolution of the bias con-
tributes a component that combines with the growth of
structure. To understand to what extent this has an in-
fluence on the measurement of the power spectrum, we

start by Taylor expanding E(χ) =
∑

E
(n)
0 χn/n!, where

all derivatives E
(n)
0 = dnE/dχn are evaluated at the ob-

server’s position. Next, we Fourier transform δH I(~x) to
obtain

δH I(~k, χ)=

∫

d3~x e−i~k·~xδH I(~x, χ)

=

∫

d3~x e−i~k·~x

[

∞
∑

n=0

E
(n)
0 χn

n!

]

δ(~x, 0)

=

∞
∑

n=0

inE
(n)
0

n!
∂n
k‖
δ(~k, 0), (24)

where we used the fact that χn = in ∂n
k‖

e−i~k·~x. Next

we note that δ(~k, 0) is a Gaussian random variable with

dispersion σδ(~k,0) =
√

P (k, 0). We can then rewrite it as

δ(~k, 0) =
√

P (k, 0)λ~k with λ~k a Gaussian random vari-

able with 〈λ~k〉 = 0 and 〈λ~kλ
∗
~k′
〉 = (2π)3δ3D(~k − ~k′). Note

that ~k for λ~k is nothing but a label and that all the de-

pendence of δ(~k, 0) on the wavevector is really encoded
in the prefactor. Defining the H I power spectrum by

〈δH I(~k, χ)δ
∗
H I(

~k′, χ)〉 ≡ PH I(k, χ) (2π)
3 δ3D(~k−~k′) we can

then express PH I as

PH I(k, χ) ≈
[

L(k) + µ2H(k)
]

P (k, 0), (25)

where µ = cos(θ) is the cosine of the angle the wavevector
~k makes with the line of sight and L(k) and H(k) are the
first two terms that encode the χ dependence of δH I. We
calculate the first few terms of L and H using the fact

that k‖ = k cos(θ) = kµ and ~k⊥ = k sin(θ) = k
√

1− µ2.
They turn out to be

L≈E2
0 − E0E

′′
0

P ′

2kP
, (26)

H≈E0E
′′
0

(

P ′2

4P 2
−

P ′′

2P
+

P ′

2kP

)

+ E′2
0

P ′2

4P 2
, (27)

where P ′ and P ′′ denote first and second derivatives of P
with respect to k, while E′

0 and E′′
0 denote derivatives of

E(χ) with respect to the comoving distance evaluated at
the observer position. In general, the comoving distance
dependence generates in the power spectrum a direction-
ality dependence that is reminiscent of redshift space dis-
tortions. Despite that the nature of the effect considered
here is completely different from the one of redshift space
distortions (which is due to peculiar velocities), the two
effects may be in practice difficult to separate from one
another, unless we have a sufficiently small sample vari-
ance on the clustering measurement. However, we point
out that the n-th derivative with respect to the comov-
ing distance scales as Hn

0 and therefore E′
0 ∼ 10−4 and

E′′
0 ∼ 10−8. As such, all but the first term appearing

Fig. 7.— First two correction coefficients L(k) and |H(k)|.

in Equations (26) and (27) are of order 10−8 and only
the E2

0 term appearing in L will give a non-negligible
contribution. Also, it is possible to note that the above
treatment is valid even in the case of a perfect unbiased
dark matter tracer.
In Figure 7 we show the functions L(k) and |H(k)|.

Consistent with the above estimates, H turns out to be
extremely small. On the other hand, L is dominated
by the term E2

0 and therefore does not show any appre-
ciable k dependence, except for extremely large scales
k ∼ 10−3, where it deviates from E2

0 by about 0.3%.
These two facts together allow us to conclude that the
measurement of the 21 cm power spectrum through in-
tensity mapping should not be sensibly affected by the
redshift dependence of the bias.

4. SUMMARY AND CONCLUSIONS

In this paper we have estimated analytically and in the
Millennium Simulation the large-scale bias of neutral hy-
drogen from a non-parametric model which establish a
one-to-one relation between the total mass and the H I
mass of galactic halos. Although only an approxima-
tion, this relation is expected to hold for a large range of
masses.
The bias parameters have been calculated using a

model which uses elements of the HOD formalism, in a
way that can be considered complementary to the galaxy-
HOD model of H I galaxies carried out by Wyithe et al.
(2009); we do not deal in our case with the individual
galaxies inside dark matter halos but with the total neu-
tral hydrogen inside them. In terms of large-scale clus-
tering, these approaches are completely equivalent.
Using this approach together with different models for

the redshift evolution of the H I content in the universe
and the relation between neutral hydrogen and total mat-
ter contents of galactic halos, we analyze the evolution
of bias with redshift. We find that both linear and non-
linear bias increase significantly with redshift. This con-
trasts with the finding by Wyithe et al. (2008b), based
on an extrapolation to lower redshifts from a reionization
model of Wyithe & Loeb (2008). Since Wyithe et al.
(2008b) do not account for clustering of galactic halos
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that host all neutral hydrogen after reionization, they
underestimate the H I bias at z . 4. On the other hand,
our results are in agreement with the high value of the
linear large-scale bias at redshift z ∼ 3 measured in the
model by Bagla & Khandai (2009) where they populate
H I in high-resolution N−body simulations.
We also find that, given the limitations of our model at

high masses, the estimation of the bias does not change
significantly when the very high mass halos are neglected.
Our main conclusion is that, despite a wide range of

possible models for the evolution of H I mass function
that we consider, in all models the bias evolution is sim-
ilar –the neutral hydrogen distribution is mildly antibi-
ased at z = 0 but becomes strongly biased (bH I ∼ 2) by
z ∼ 4. This result is encouraging for the planned radio
intensity mapping experiments, since large bias implies a
stronger 21 cm signal. Nevertheless, this strong redshift

evolution does not significantly compromise the measure-
ments of the neutral hydrogen power spectrum along the
radial direction.
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